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Experiments Indicate that when Couette flow between rotating cylinders becomes 
unstable, a new steady flow arises. Mathematically this means that the cor- 
respon.dlng steady-state boundary value problem for the Navier-Stokes equa- 
tions has more than one solution. The purpose of the present study is to 
prove this fact in the case where the cylinders are rotating in the same 
direction. The Indicated phenomenon occurs not only for Couette flow, but 
also for a certain class of fluid flcws. 

The method employed here is based on Krasnosel'skll's theorem [I] on the 
bifurcation solnts of onerator euuations. The annlication of this theorem 
to Navier-Stokes equations was considered in [2];-where the nonuniqueness 
of the solution of a certain steady-state spatially periodic problem was 
demonstrated. 

The most difficult task involved in the application of Krasnosel'skii's 
theorem is the %nvestlgatlon of the spectra of linearized problems. In the case 
we are about to consider the study of the spectrum Is facilitated by the 
results of Kreln and Gantmakher on oscillatory Integral operators [3 to 53. 

4.1 
The principal conclusions concerning bifurcation are formulated in Theorem 
and in the notes made in connection with it. 

We shall also show that the flows under consideration are unstable for 
large Reynolds numbers (see Theorem 5.1). 

1. Bonmtfatlon or thr problem. Let any viscous Incompressible homogene- 

ous fluid fill the cavity between two coaxial cylinders with r = rl and 

F = rz ; r, 0, 2 are cylindrical coordinates. We shall attempt to find 

the axisymmetrical steady-state flows, i.e. flows such that the velocity 

components v,', uef, n,' depend solely on r and t and are independent of 

0. We shall also assume that v,.', vg', Vzt are periodic relativeeto z 

with a period m/a,, and that the velocity flux through the transverse 

cross section of the cavity Is 0 
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Assuming that the cylinders are solid and rotate with the angular velo- 

cities UI~ and u)~, respectively, and that the vector of the vortlcal mass 

forces F Is of the form (0, g(P), 0), It Is easy to see that all of the 

requirements posed are satisfied by flow with a velocity vector v,, and a 

pressure P, r 

i 

zJor = 2)oz = 0 

2’03 = Vo (r) ) ’ 
P* = 

s 
y dp + const 

r1 
(1.2) 

where the function uO(r) Is defined unambiguously as the solution of the 

boundary va,lue problem 

We further assume that F , and therefore vO, do not depend on the coef- 

ficient of viscosity v . Specifically, If F = 0 , then (1.2) represents 

Couette flow, 

(1.4) 
Seeking solutions v', P' of the formulated problem which differ from 

(1.3) in the form 
v' = v + vg, P’ = vp + PO (1.5) 

we obtain the following system of equetlons for determining V , P: 

Here the functions u,., ue, I& must be &/ao-periodic relative to z 

and vanish for F = rl, r, . The fulfillment of the condition 

which follows from (l.l), Is also required. 

The lvarized problem which corresponds 

the form 

=o (1.7) 

to problem (1.6) to (1.7) 1s of 

A+,- ; = hjdt+;)u,, aq 0 
T¶ 

Au,--= , 
s 
z&r& = 0 

r1 
and the con&gate problem Is 



= - h2Tw,, Awz-$0, 
:I 

I 
w,rdr==O 

rl 
The boundary conditions for the vectors u , w are the same as,for the 

vector V'. 

Let us c'onsider the set N of doubly continuously differentiated sole- 

noldal vectors [v) which are defined In the closed domain (r15r i r, ; --m< 
<I<+“]) are axlqnmnetrlcal (u,, ue,O= are independent of e), vanish 

for r - rl, ra have a flux of zero through the transverse cross section of 

the cavity, and are such that u,, vB are even functions of a , and v, 

Is odd. By ii,' we denote the Hilbert space obtained by supplementing the 

set A with respect to the norm generated by the scalar product 

n/a. r 

(v, U)Er,* = - 
s I 

dz ’ Avurdr = 

--nl=. ?I 

Inverting the operator defined by relations (1.6) and (1.7) for A I 0, 

we redwce problem (1.6),(1.7) to the cperator epuation 

v=?iK,v (1.10) 

In a similar way, problems (1.8) and (1.9) are~reducible to the operator 

equations 
u = kA,u, w = hA,*w (1.11) 

. The operators K,, AO, ,Jo* are completely COntinUOUS in the space H,O; 

the operator Aa Is the Frechet differential of the operator K0 at the point 

v-o; A,,* Is the adjolnt of A0 in H,'. All of this follows from the 

results of [2]. We note that H,O Is a subspace of the space H, considered 

In [2], and that the operators K,, AC., Ao+ are the contractions of the 

operators K, A, A* of l-21 onto the (Invariant) subspace X1' . 

2. Reduction to an Inteed l qwtlon. By expanding In a Fourier series 
we see that the solution of spectral problem (1.8) Is a linear combination 

of solutions of the form 

1~~ = u (r) cos az, u0 = u (r) co9 a2 (2.4) 

uz = w (r) sin az, q = x (r) cos a2 

where c - kaO (k Is a natural number) and the functions w, n are expressed 

In terms of u and v by Formulas 

w(r) =-&g(m), x(r)=-f($-+-+-$ ) -a9 w 

The functions u, 0 and the corresponding elgenvalue of i are deter- 

mined by solving the spectral problem 
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(L - ay u = 2a2ho v, (L-a2) v = - hgu, u=v=2u’ -- 0 (for r rl, r2t 

Naturally enough, the aforementioned linear combination contains onlv 

those solutions of (2.1) which have the same corresponding value of 1 . The 
functions w and @ will henceforth be considered continuous. 

Now let us reduce problem (2.2) to an Integral equation. bet 0, (f, P), 

Oe(F, p) be the Green's functions of the differential operators - r(L - n2), 

F(L - a”)” with the boundary conditions u - 0 and u - u'= 0 (r = rl, r,), 

respectively. Lat GI, Go be integral operators given by Formulas 

Gk/ = 5 Gk (r, @f(P) pdp (2.3) 
rl 

Both Green's functions &(F, p) and Ge(F, p) are continuous with respect 

to F, P and symmetrIcaL. As we know, this follows from the symmetry of 

the corresponding differential operators. 

Let us denote by Ho the Hilbert space L, with the weight F on the 

segment CF,, Fe]. The scalar product in K0 is given by Formula 

(%Wf* = S'lp(rHW rdr (2.4) 

rl 
The operators C,, C, defined by.Formula (2.3) are symmetrical and com- 

pletely continuous In He. 

Problem (2.2) Is equivalent to finding the spectrum of the system of inte- 

gral equation8 
u = 2a2hG,o v, v = hG,gu (2.5) 

or any of the Integral equatlols 

u = @&oG,gu, v = pG,gG20 v (p = 2rW) WI 

Here UJ, Q denote the operators of multiplication by the functions ul(r) 

and U(F) , respectively. 

Hlmifarly, seeking the,solution of conjugate problem (1.9) in the form 

z.6 = z(l (r) CO9 az, We = v1 (r) cos az, wZ = w1 (r) sin az, Q = x1 (r) cos ,T.L 

we arrive at the problem of elgenvalues for determining ul, v, 

(I; - a")" uI = hct2gu1, (L - a2) v1 = - 2hou, 

u1 = q’ = v1 = 0 (for r=t1, r2) 

problem 2.8 is equivalent to the system of integral equations 

(2.8) 

4 = ha2Gagv,, 

or to any of the integral equations 

Vl = 2hG,ou, (2.9) 



826 V.I. Iwlovich 

For speclf IC 

a1 = f&gG,q, Ul = pG1oGzm (2.$0) 

lty we shall next consider the first equation of (2.6), which 

can be written as 
U=pBU (B = G&&g) (2.11) 

Let u > 0 be one of Its elgenvalues. Then h = & 1/4$&X2 1s the 

elgenvalue of problem (2.2); u can be found from the second formula of’ 

(2.5). The equation conjugate to (2.11) Is of the form 

Us = @&.4s (B*=gClwGa) (2.12) 

Combining the second equations of (2.10) and (2.12) we note that uO= gv, 

1s the solution of Equation (2.12). 

Let us suppose that p > 0 Is a single elgenvalue of the operator p . 
Hence It follows (see [2], Lemma 1.5) that (u, U&H,= (u, gV,)H@#= 0. 

Lemma 1.1. Let p :, 0 be an elgenvalue of the operator B-G,G,B, 

and let its rank be 1 . Then h = F fp/2a2 Is an elgenvalue of the oper- 

ator A,, (see (l-22)), and Its rank 1s also I . 

Proof Let us compute the scalar producy (u, w)R,', where u, W 
are the eigenvectors of the operators A,,, Ao* defined by Equations (2.1) 
and (2.7) which correspond to the elgenvalue X . Multiplying the second 
third and fourth equations of (1.8) by tur, wg and 2~~~ respectively, we find 
that 

"/,"o ', 

With the ald of (2.1 and (2.7) the second 
of (2.9), we find from 2.13) that t 

f gu,wb) rdrda (2.13) 

equation and the first equation 

Hence it follows that the rank of the elgenvalue 1 Is unity. Lemma has 
been proved. 

3. On Orron’ funotllonr dl md 02 . Let us consider the differential 

operators -r (L - aZ), r (L - a2)2, which can be represented in the form 

Here pO(r), pi(r), pa(r) are positive functions and 1, is a modified 

%ssel function. 

In accordance with results of Kreln [3] this Implies that G,(r, p), 

Ga(r, p) are oscillatory kernels. This means that the following conditions 

are fulfilled: 

1. G (r, P) > 0 (b < rr P < r~) 
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3. det II G (pi, ps) jj&=1 > 0 *or rl < PI < . . . < in < r:: 

An Integral operator with an oscillatory kernel will be called osclllato- 

ry; Cl and G2 are oscillatory operators. 

Further on we shall require the following Lemma. 

Lemma 2.1. The operators G1 and Gz In the strip IIm 01 -c b. 
are analytic functions of the parameter c , I.e. in the neighborhood of any 

a from this strip they can be expanded In Taylor series which converge In 

the norm of operators. The positive number b. depends solely on Fl and rz. 

Proof . Let us make use of the familiar fact (e.g. see [ 81) that If 
a linear operator depends analytically on a parameter within some range of 
Its variation and has an Inverse operator, then the Inverse operator Is an 
analytic function of the parameter In the same range. 

The boundary value problems 

(L - cc+ = --f, v=o for r = r,, r, 
I 

(L - a~)% = f, u=u’=O far r=r1, 3 ’ r (3.2) 

are equivalent, respectively, to the Integral equations 

D + asG,,v = Glof, u - 2a~G&~ -I- a’G,,u = Geof (3.3) 

where G,c (k = 1, 2) means the operator G, for a = 0 . 
From (3.3) we have the following representations of the operators G1, G,: 

G, = (I + aaGnJ%c, G, = (I - 2dG& + a’G,,,)-‘C,, (3.4) 

We note that the operators G,c, GzO are completely continuous, symmetrl- 
cal and positive, and that the operator GaoL admits of extension to a 
completely continuous operator (Integration by parts transforms It Into an 
Integral operator with a continuous kernel). 

It is now sufficient to establish that operators inverse to those of (3.4) 
exist for any a from some strip 1Im al < bO. Let the elgenvalues of the 
operator G,c be 0<b,r<8,r<...<b,a<..., and let bBa+ m as n - (D . 
Then the operator (I + aaGlo )- ’ exists for any a except 0~ = IFib,, Fibs, . . - 
and, In any case, for any a from the strip lImaI < 6,. This proves the 
requlr?d statement about the operator G, 

We shall now show that if the quantity [Im aI Is sufficiently small, then 
the second equation of (3.3) for .? = 0 , 
ary value problem of (3.2) for I - 0 

or (equivalently), the second bound- 

the second equation of (3.2) for f = 0 
has a zero solution only. Multiplying 
by u* and Integrating over r from 

rl to F2 we obtain 
11~ IV + 2a2 II ~11~~ + a4 II ulh? = 0 (3.5) 

rl 

( II u II 0 = II u II Ho’ II u II 2 = II Lu II Ho, II I4 II 12 = SI $-++l’rdr) 
rl 

Setting a = y + tb and separating the real and Imaginary parts In (3.5), 
we obtain 

1 U 1~s + 2 (~2 - 8%) 11g2 + up - v - 4vw II 42 = 0 

$ I II u Ii? + (Y’ - 6’) II U lb’] = 0 
As we how (see [7]), the following Inequalities are valid: 

II u lh < co II u Ill* II~Ih~<cclll~Ib 

(3.6) 

(3.7) 

(3.8) 
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where oc, 
set 

o1 are positive constants which depend only on rl and r2 . We 

80= min 
i 

61, ~0, 

and let Im a 
from (3 b) (21 Yo!6'6<+600., y # 0 from (3 7) 

Then the fact that u = 0 follows: (1 
. 

we deduce Chat 
. . In fact, from (3.7 

0 = II u Ih’ + (Y’ - a*) 1141 t ,, (i - Wc,‘) II u Iha + 3 II u lb’ 2 y’ 1 u ll 2 
3) for 6 # O,, y - 0 from (3.6). 
In fact, that 

Prom (3.6),(3.8) for y = 0 we find, 

0 = 1 I( IL' - W II a Ills + tY II a lb4 > (1 -&,W II u lb’ + @ II u lb% > b4 ll u A 2 
The foregoing, In accordance with Fredholm's theorem, Implies that for 

IIm a 1 < b. the operator I - 2a*C& $a%&, Is Invertible. The second ex- 
PIWBeiOn of (3.4) implies that the operator C, in the strip IIm cl < 6c 
depends analytically on Q . The Lemma has been proved. 

4. me rp8otrunl o? b1?ur0&1on. In the present section we shall estab- 

llsh conditions under which the operator A6 defined in (1.11) has a real 

and singular spectrum. From this, by virtue of Krasnosel'skil's theorem, 

we deduce that each elgenvalue of the operator A0 is a bifurcation point 

of the operator Ko: for values of the parameter i which are close to it, 

Equation (1.10) and thereby boundary value problem (1.6),(1-T), have zero 

solutions. 

Theorem 4.1, Letthecondltlons 

0 (r) = uo(r) / r > 0 (rl< r < r2) (4.1) 

g(rj=-(du,/dr+vo./r)>O (rl < r < rd (4.2) 

be fulfilled 

Then for any cc with the exception of some denumerable set the operator 

A0 has a sequence of posltl\e and simple elgenvalues 0 < X,< A,< . . . each 

of which Is a bifurcation point of Equation (1.10). All of the intervals 

(1, f XP), (A,, A.) ..* belong to the spectrum of Equation (1.10). 

If condition (4.1) Is fulfilled, and if the inequality 

g (r) = - (duo I dr + u. I r> < 0 (4.3) 

which Is the opposite of (4.2) Is satisfied Instead of the latter, then the 

operator Ac does not have any real elgenvalues, and there Is no bifurcation. 

Proof. Let conditions (4.1) and (4.2) be fulfilled. Since the pro- 
duct of the oscillatory operators Is et another oscillatory operator [3 to 
53, the ope ator 

f 
p defined In (2.11 3 is oscillatory. According to the 

results of 4 and 53 this Implies that Its spectrum consists of a sequence 
of singular positive elgenvalues 
spectrum of the operator 

O<II,(a)<Ir,(a)<...<p,(a)<... The 
A0 therefore consists of the real elgenvalues 

lLIL= ( pi: )“‘, &‘=- (‘G)” (i, k=l, 2,. . .) 

According to Lennna 1.1, all of them have a rank of 1 . For this reascn 
the multlpllclty of each of them is equal to the dlmenslonallty of the free 
vector space. Thus, the multlpllclty of an elgenvalue, let us say hit,, 
is equal to the number 
row and equal to hi,~, 

of elements in the matrix (X,,) situated in th8 same 
because of the singularity of eigenvalues u,, the 

columns of the matrix X,, ) do not contain Identical elements). 
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What follows Is based on the following Lemma, which Is a simple corollary 

of the theory of perturbations of the spectrum of a linear operator. 

Lemma 4.1. Let the linear operator ~(a) be 

and analytic with respect to a along the real axis. 

slst of a sequence of positive and slrgle elgenvalues 

. . . < cr.(a) < . . . Then all pt(a) (k = 1, 2, . ..) are 

on the real axis. 

completely continuous 

Let Its spectrum con- 

O<cl~(a)<u~(a)C . . . 

analytic functions 

Proof According to perturbation theory (e.g. see [6 to al), the 
singularity of-the elgenvalue u,.(c) Implies the D sslblllt 
extension along a . In this case 
IS valid for any c , 

&-I (a) <,,(a7 <pk+l,(C$ o',kl%a?ialy.t$ 
since It cannot ce violated without the appear&& of' 

a multiple elgenvalue for some value of a . The Lemma has been proved. 

It Is sufficient to consider the elgenvalues X,,. 

Let US set Ai (U) = fpi(CZ)/ CC'. (The function A,(a) is analytic with 

respect to a on the positive semlaxls a > 0 . We have hik = Ai (kc&,). 

The set r nf those a0 for which there are at least two ldelrtlcal numbers 

among the A,, Is clearly the join over all natural t, k, F, 8 of the sets 

r ik,, of those a0 for which the equation 

Ai (k%) - A, (WJ = 0 (4.4) 
Is fulfilled. 

We shall show that the analytic function Aikrs (a) = Ai (ka) - ~4, (a) 

cannot be an Identical zero. 

In fact setting for example 
A,(a) > A,(a) J 

t > r and taking account of the Inequality 
from the assumption that A - we arrive at the conclusion 

that 
A 

which Is Impossible for 8 - k . If, on the Qther hand, a # k , then for 
any 0 < a -z 0 and any natural p we have 

A,@)>A,((f)P a)d+m f- P--J . 
since ~\~(a) 4 m a"s c - 0 or - (see Note 2 below). The same reasoning 
applies to the case t-r. 

Now we can say that rlrr, as the set of zeros of the analytic function 

A~*,, Is not more than- denumerable. Hence the set r Is not more than 

denumerable. 

r Is, In fact, denumerable; 
Note'?'below). 

Its llmltlng points are 0 and m (see 

Let a,er. We number the elgenyalues ilr In Increasing order to obtain 
the sequence of single elgenvalues of the operator A0 : 0 c k,< )i,< . . . . 
Each of them, In accordance with Krasnosel'skll's theorem Cl], Is a blfurca- 
tlon point of Equation (1.10). 

From the results of [g] It follows that the rotation of the vector field 
on spheres of large radius In the space 

just as In [2] we find that 
H ' Is equal to + 1 . 

X from the Intervals (A 
eytlg: 11.10) has nontrivial 

2 , 
Intervals belong to the spectrum of the ope&tor KO. 

3, A,).... These 

If conditions (4.1) and (4.3) are fulfilled, then the operator - B Is 
oscillatory. Hence, the operator A. has no real elgenvalues under these 
conditions (they are all Imaginary), and there Is no bifurcation. The theorem 
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has been proved. 

#Note 1. The theorem and its proof remain valid if equality In lndl- 

vldual points of the segment (rl, r2) Is admitted in (4.1) and (d.2). We can 

also consider very irregular w and g , e.g. replacing grdr by du in 

the second integral operator of (2.10); here a Is an arbitrary Increasing 

function. 

Note 2. Let us call the quantity 

ho = min A1 (a) for o<z<co 

*he bifurcational critical Reynolds number. 

We shall prove that no> 0 and Is attained for some value of c . 

Since the function Al(c) Is continuous for a f=(O,oc), it is sufficient 
to establish that Al(c) - + m for c - 0, 0~ . Since n,(a)= c-1 l/pl(a), 
and ul(c) is an analytic function on the entire real axis, and ~~(0) > 0 , 
it follows that 

Al(a)-a-l Vpl(0)-+cc f0t a+0 

Further, multiplying the first two eguatlons of (2.2) for A = A,(a) by 
respectively and Integrating over [r,, rs] , we obtain the rela- 

ZoZ(Zr'notation see 13.5)) 

II u I/ 2% + 2a2 [I u /I 12 + a4 I] u Ilo2 = 2a2A1 { ovurdr, 11 v jl l2 + a2 11 v 11 o2 = A1 1 guvrdr (4.5) 

rl rl 

We set 

Applying the 

(4.6) 

virtue of the fact that (u, V) is a nonzero solution, we obtain from 
(4.3 the estimate 

A,> JfZa2/C++ 09 for a--*$-~ 

This proves our statement. 

It remains uncertain whether it is true that flow (1.2) is stable for 
A < II~ ("principle of alteration of stability"). 

Note 3. The exclusive denumerable set f mentioned in the proof 
of the theorem actually does exist. 

In fact, since the function A = Al(a) - m as a - 0, m , we can Point 
out two continuous branches of the inverse function 

aa - m as A - + m . 
(k) 

al(x) - Cl ; 
c,(x) such that 

Then a,(A)/a~!~) - ikD t;;re"e;~;t; 
so that for each natural k starting with some particular 

such that ao(qr) = ha1 (Q) . Let us Set aI = aok. Then 
= hl(ack) . the set f contains all of the points aO* (k = 1, 

and Is therefore denumerable. 

Approximate computations indicate (it would be interesting to have a 

rigorous proof of this) that Al(a) Is a'downward convex function. If this 

Is indeed the case, it follows that A0 is attained for a unique value of 

co , and that AI is a bifurcation point in a certain one of its neigh- 

borhoods. 

Note 4. The theory of oscillatory operators [3 and 53 implies 

several things about the properties of the eigensolutions of problems (2.2). 

For example, for solutions (u, u), (ul, ul) of these problems which 
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correspond to the minimum elgenvalue , all of the functions u, u, WI, U1 

retain the same sign on the segment (rl, r2), while for the kth (In magnl- 

tude) eigenvalue, each of these functions changes sign k - 1 times. The 

elgenvalues of each of the equations (2.6),(2-g) from a complete system in 

H 0. 

Rote 5. As an example, let us consider Couette flow (1.4). Here 

we have 
0 (r) = a + b / r2, g (r) = - 2a 

Prom Theorem 4.1 we find that if the cylinders are rotating In the same 

dire&Ion, UI%> 0, ~520 (the outer cylinder can be at rest), then second- 

ary steady flows arise with a certain Reynolds number , provided the condition 

w2r22 - Vl” < 0 
On the other hand, if the opposite Inequality 

c13,r,~ - colr12 > 0 

applies, then there Is no bifurcation. As we know (see [lo and 11)) In this 

case the Couette flow Is stable relative to zixlsymmetrical pcrturbatlons for 

any Reynolds number. 

Let us cite a slmple proof of this fact (*). 

We shall consider the nonsteadystate equations corresponding to system 
(1.8). These are obtained by adding the terms --)I(du I at), -k(&,/ at), 
--h(8u,fift) to the left-hand sides of the second, third, and fourth equa- 
tions of (f-8), respectively. Multiplying these equations by nr, -%ig(~e), 

summing the resulting equations, and Integrating over the domain 
we obtain 

-+ & (U,.’ -t- huea + uz2) rdtdz = - 

-t ($g2 + (~)2]rdrrlr-v 

!J ( 

h a; -g+ 

-i- $- + T)B@ $! +h ( >)l]rdrd. i (h,+ (4.10) 

In order for the right-hand side In (4.10) to be negative, and for flow 
(1.4) to be stable for any Reynolds number, it is sufflclent that the func- 
tional r* 

be nonnegative on the set of smooth functions v(r) which vanish for f= rI,r2. 
Specifically, this requires that the function h be nonnegative. Rut for 
Couette flow with allowance for (4.7) and (4.9) we find with a > 0 that 

h 
2w 

=-- 
g 

i(.)=f h(Y.-$)2rdr>0 fv’+f3 
It 

*I A slight alteration of this proof would enable us to show that stability 
also takes place when wara2 - olr$ = 0 . 



832 V.I. Iudovich 

We have just proved the stability of flow (1.3) in a linear approximation. 

fiowevef , according to the results af [12], nonlinear stablllty also follows. 

3. &@%8bil%ey. In this section we shall establish that under conditions 

(4.1) and (4.2) which ensure the appearance of secondary flows, principal 

flow (1.2) Is unstable for sufficiently large Reynolds numbers. 

In [I33 this fact was established in the case of Couette flow through the 
as~ptoti~ integration of system (5.1),(5.2) for X - = . 

As we know, the matter is reduced to an investigation of the spectrum of 

the boundary value problem 

(L - .2)2 u - (5 (L - a”) u = 2a2hov, (L - a”) v-cTv=- hgu (5.4) 

u = a1 = 0 (r = rj, rJ1 u = 0 (7. = r1, rz) (5.2) 

If all of the elgenvalues u, (Jc = I, 2, . ..) for a given b have nega- 

tive real parts, then flow (I.2) Is stable. The existence of at least one 

eigenvalue with a positive real part results in instability. The appllcabl- 

llty of the method to the nonlinear instability problem is justified in [12]. 

Theorem 5.1. Let condltlons (4.1) and (4.2) be fulfilled, Then 

for any Q > - (a” + o0 ) (oO > 0 depends only on rl and r,) there exists a 

sequence X,< X,< . . .; X,* m of X values such that problem (5:1),(5.2) 

has a nontrivial solution. 

Proof The differential operators in the left-hand sides of Equa- 
tions (5.1) adkt of the repsesentatlon 

where QOJ Pl, P2 

by Equations 
are functions defined in (3 .l) , ad pea, pIa, pzo me Given 

r 
WW = paa = YI fr), P1a = 8 

&a 
{S.-l) 

where Y,(P) Is some solution of Equation 

IL - as - a)Y, = 0 @) 

If a2 + u > -cr, Is the first eigenvalue of t;le differential 
operator - L for ih!hEzEondODcondition of (5.2), teen Equation (5.5) has a 
solution Y, which is positive on the segment [ fl t rg] (if o2 + u = 8” 1‘ 0 , 
as our Y1 we simply take I, (P,) 1. 

3y virtue of the results of Krein [j and 41, (5.3) implies that the CC@- 
responding Green’s operatorsC;,,+ G,, are oscillatory. It remains for us 
to note that boundary value problem (5.1)) (5.2) Is equivalent to the inte- 
gral equat Ion 

11 = @J& B, = (&$,,g (5.6) 

with the oscillatory operator B, and once agaln rcftr thc2 reader to the 
results of [5]. The theorem has been proved. 
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