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Experiments indicate that when Couette flow between rotating c¢ylinders becomes
unstable, a new steady flow arises. Mathematically this means that the cor-
responding steady-state boundary value problem for the Navier-Stokes equa-
tlions has more than one solution. The purpose of the present study is to
prove this fact In the case where the cylinders are rotating in the same
direction. The indicated phenomenon occurs not only for Couette flow, but
also for a certain class of fluid fleows.

The method employed here is based on Krasnosel'skil's theorem [1] on the
bifurcation points of operator equations. The application of this theorem
to Navier-Stokes equations was considered in [2], where the nonuniqueness
of the solution of a certaln steady-state spatially perlodic problem was
demonstrated.

The most difficult task involved in the application of Krasnosel'skii's
theorem is the investigation of the spectra of linearized problems. In the case
we are about to consider the study of the spectrum is facilitated by the
results of Krein and Gantmakher on oscillatory integral operators [3 to 5].

The principal conclusions concernlng bifurcation are formulated in Theorem
4.1 and in the notes made in connection with 1t.

We shall also show that the flows under consideration are unstable for
large Reynolds numbers (see Theorem 5.1).

1. Pormulation of the problem. Let any viscous incompressible homogene-
ous fluid 111l the cavily between two coaxlal cylinders with 7» = r, and
r=r, ; r, 8, z are cylindrical coordinates. We shall attempt to find
the axisymmetrical steady-state flows, i.e. flows such that the velocity
components p,’, pg’, v,” depend solely on 7 and 2z and are independent of
§ . We shall also assume that v, , 1y, U;) are periodic relative®to =z
with a period 2n/ao, and that the velocity flux through the transverse
cross sectlon of the cavity 1s O

T2
Sz;,_' (roz)rdr =0 (1.1)

Ty

822



Secondary. flows and fluid instability between rotating cylinders 823

Assuming that the cylinders are solid and rotate with the angular velo-
cities w, and w,, respectively, and that the vector of the vortical mass
forces F 1s of the form (0, vwF(r), 0), it is easy to see that all of the

requirements posed are satisfied by flow with a velocity vector v, and a
r

Vap = Vn, = 0 202
( or 0z )' PO — S _i.@. dp + const (12)
P
Vs = Yo (7) v
where the function vo(r‘) i1s defined unamblguously as the solutlon of the

pressure P,

boundary value problem
d? 1 d 1 (170 (r1) =0)1"1> 1.3
(Fr++ar—)o="F0O [ on (1-3)
We further assume that F , and therefore vy, do not depend on the coef-
ficient of viscosity v . Specifically, if F = O , then (1.2) represents

Couette flow, b OF s — Oyre? (@ PR
= — — W2 — 1 — 1 W)L 2
Vo (7') = ar + ro a 722—"12 ’ b "nz“"lz (1'4)
Seeking solutions v‘, P’ of the formulated problem which differ from
(1.3) in the form
v =v + v, P’ =wvp + P, (1.5)
we obtain the following system of equations for determining v , p :
1 9 0y,
— 5 ron) + 55 = (1.6)
v, op v, v, Vg Vo
Aoy — 5 — 5 = [”’737 Vg T1TF —2—’“]

Ave——%z ),[ ivl+ aﬁ_i_f_’v_"_{_(%e._l_f_".)vr]

r

1 92 1 0 2’
(b= 8=ar + 73 +51)

Here the functions v, Us, U; must be 2n/geo-periodic relative to =z
and vanish for r = r;, r; . The fulfillment of the condition

Iy
u
\ v:(r 27 dr =0 (1.7)
Ty
which follows from (1.1), is also required.
The linearized problem which corresponds to problem (1.6) to (1.7) 1s of
the form

1 0 du u dq 2v
Tarlu) t =0 dw— -0 Bu
u dvg Vo d S
Aug — r—:-zx(bT—}——r—)ur, Auz——i=0, Suzrdr=0

ry
and the conjugate problem 1s
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1 dw, .3 /d

T e+ R =0, Aw,— S (T PYuy (19)
b o

Awp— =% — — 22 2y, Aw,—Tg—:.O, Sw"d"zo

Ty
The boundary conditions for the vectors w , w are the same as, for the

vector Vv’.

Let us consider the set N of doubly continuously differentiated sole-
noidal vectors {¥]} which are defined in the closed domain {(risrsr,; —=<
< z < + =} , are axisymmetrical (v,, vg,v, are independent of ¢), vanish
for r = r,, r; have a flux of zero through the transverse cross section of
the cavity, and are such that v,, Vg are even functions of =z , and v,
is odd. By H,° we denote the Hilbert space obtained by supplementing the
set ¥ with respect to the norm generated by the scalar product

n/axy r

o (Vv,u)ge = — _,S.,,. dzrsl Avurdr =
=— S sz[(Av,.—i:;—) ur + (Av.——%)ue%—szuz]"dr.
—-nike Ty

Inverting the operator defined by relations (1.6) and (1.7) for X = O,
we reduce problem (1.6),(1.7) to the cperator equation

v = AKyv (1.10)
In a similar way, problems (1.8) and (1.9) are reducible to the operator

t
equations u=Adgu, w = MW (1.11)

e The operators K,, Ao, Ao* are completely continuous in the space H,°;
the operator A4, 1s the Frechet differential of the operator X, at the point
v =0 ; Ao* 1s the adjoint of A4, in H,°. All of this follows from the
results of [2]. We note that KX,° is a subspace of the space #, considered
in [ 2], and that the operators £X,, 4o, Ao*® are the contractions of the
operators K, A, A* of [2] onto the (invariant) subspace H,° .

2. Reduction to an integral equation. By expanding in a Fourler serles
we see that the solution of spectral problem (1.8) 1s a linear combination
of solutions of the form

ur = u (r) cosaz, Uy = v (r)cosaz 2.0
u, =w (r) sinaz, ¢ =% (r)cosaz
where o = kae (¥ 1s a natural number) and the functions w, x are expressed

in terms of uy and v by Formulas

1 d 1 a2 1 d
— = — = (= — a2
wdrvw’ ®(r) a@ﬂ-+r dr a>w

The functions ¥, U and the corresponding eigenvalue of X are deter-
mined by solving the spectral problem

w(r) =—
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(1)

(L —ao®2u =200, (L—a®) v=—Agu, u=v=u = (for r ry, ra)

Vo dvg ErY d? i d 1
[(3) —— == e | e — — e e e 234y
r) r? g(r) ( dr + r )’ L dr? + rodr re (=2
Naturally enough, the aforementioned linear combination contains onlv
those solutions of (2.1) which have the same corresponding value of A . The

functions w and ¢ will henceforth be considered continuous.

Now let us reduce problem {2.2) to an integral equation. Let ¢,(r, o},
62(r, p) be the Green's functions of the differential operators — r(L —a%),
r(L — o®)? with the boundary conditions u = 0 and u =u’=0 (r =r,, 7},
respectively. Let §,, G, be integral operators given by Formulas

rz
Gyf =\ Gx(r,9)/ (p) pdp (2.3)
Iy
Both Green's functions ¢,(r, p) and G,(r, p) are continuous with respect
to r, p and symmetrical. As we know, this follows from the symmetry of
the corresponding differentlial operators.

Let us denote by #, the Hilbert space L, with the weight r on the

segment [r;, r,]. The scalar product in &, 1is given by Formula
rs

@ 9m=\ o ()0 () rdr (2.4)
Ty
The operators ;, ¢, defined by.Formula (2.3) are symmetrical and com-
pletely continuous in H#,.

Problem (2.2) is equivalent to finding the spectrum of the system of inte-

gral equations u = 203\Gy0r v, v = AG,gu (2.9)
or any of the integral equatinms
u= };Ggm Glgu, v = p,Glngm v (p = 22%3%) (26)

Here w, g denote the operators of multiplication by the functlons w(r)
and ¢(r) , respectively.

§1milar1y, seeking the ,solution of conjugate problem {1.9) in the form

wr = uy (r) cos az, we = v, (r) cosaz, w, = w, (r) sinaz, Q = %, (r) cos az

1 d . 1/ & 1 4 5 =
(wx (N=—rgr(rm) wmi=—4 ( e +";;—-a2) wx) (2.7)

we arrilve at the problem of eigenvalues for determining w,, v,
(L — a®? uy, = ha%gy,, (L —a®) v, = —2hou,
Uy =1uy =0,=0 (tor r=ry, ) (2.8)
Problem 2.8 is equivalent to the system of integral equations
uy = Aa2G,guv,, vy = 2MG Uy (2.9)
or to any of the integral equations



826 v.I. Iudovich

ul == y‘ngGlﬁ)ul, v‘ ad pGlﬁ)Gngl (2.10)
For specificity we shall next consider the first equation of (2.6), which
can be written as

u = pBu (B == G206,g) 211
Let u > 0 be one of its eigenvalues. Then A = - 'l/;at/.?.oc2 is the

elgenvalue of problem {2.2); v can be found from the second formula of
{2.5). The equation conjugate to (2.11) is of the form

uO == p’B*uo (B* :gGlﬁ)Gg) (2‘12)

Combining the second equations of (2.10) and (2.12) we note that wug= gv,
1s the solution of Equation (2.12).

Let us suppose that u > O 1s a single elgenvalue of the operator 5 .
Hence 1t follows (see [2], Lemma 1.5) that (u, ug)m,= (¥, guy)m, = 0.

Lemma 1.1 . Let u > 0O be an eigenvalue of the operator 2g=0,0,¢,
and let its rank be 1 . Then } = F Vp./Zaz is an eigenvalue of the oper-
ator 4, (see (1.22)), and its rank is also 1

Proof . Let us compute the scalar producy (u, w)ﬁ,", where 4, W
are the eigenvectors of the operators A4,, 4o* defined by Equations (2.1)
and (2.7) which correspond to the eigenvalue A . Multiplying the second
third and fourth equations of (1.8) by w,, wy and w,, respectively, we find
that S

(u, W)go== 24 S S (2ougw, -+ gu,wy) rdrdz (2.13)
iy Ty

With the aid of (2.1% and (2.7) the second equation and the first equation
of (2.9), we find from (2.13) that

Ts

R xh { Tk .

u, Wgo= AOKS (2wvug 4 gun) rdr == % [(poGigu, Ggrig, -+ (4, W)y 1=
ry

Th 2nh
= Gy LBG0Gagu, gy + (v, wo)y ) = 5= (4, ko), F 0

Hence it follows that the rank of the eigenvalue X 1s unity. Lemma has
been proved.

3. On Green's funotions ¢, and @¢. . Let us consider the differential

operators —r (L — a"), r (L — a?)?, whlch can be represented in the form
—r{(L—a¥)u= £ —d—-pu
= Pogr Prgr P (Po(")zpz(’)zh (ar)) (3.1)
pr{r)=r/ps? ’

d d d d
r(L—a?)?u = po 5 P15 PaPo 7 P15 P2l

Here po(r), p,(r), po(r) are positive functions and I, 1s a modified
Bessel function.

In accordance with results of Krein [3] this implies that &, (r, o),
¢,{r, p) are oscillatory kernels. This means that the following conditions
are fulfilled:

1. Gk (r, p)>0 (m<r, pgr2)
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MLl .. <M,
prLp<. .. <pn

3. det| G (i, ) o= >0 for n<m <. <pa< e

An integral operator with an oscillatory kernel willl be called oscillato-

2. det]Gi (g o) e >0 tor 1< <rs

ry; G, and (¢, are oscillatory operators.
Further on we shall require the followlng Lemma.

Lemma 2.1 . The operators ¢, and @, in the strip |Imal < &
are analytic functions of the parameter o , 1.e. 1n the neighborhood of any
a from this strip they can be expanded in Taylor series which converge in
the norm of operators. The positive number &, depends solely on r, and 7.

Proof . Let us make use of the familiar fact (e.g. see [8]) that if
a linear operator depends analytically on a parameter within some range of

its variation and has an inverse operator, then the inverse operator 1s an
analytic functlion of the parameter in the same range.

The boundary value problems

L—a*)=—f v=0 for r = ry, Iy
L —a?Pu=f u= ;z' =0 tor r=ry,rq 3.2)
are equlvalent, respectively, to the integral equations
v + a¥Gygv = Gyof, u — 20%GyLu -+ afGaou = Gyof (3.3)

where G,o (% = 1, 2) means the operator @, for a = O .
From (3.3) we have the following representations of the operators G,, G,:

Gy = (I + a2Gy)™1Gy,, Gy = (I — 203Gyl + 4Gy)Gye (3.4)

We note that the operators (,0, Goo are completely continuous, symmetril-
cal and positive, and that the operator G,oL admits of extension to a
completely continuous operator (integration by parts transforms it into an
integral operator with a continuous kernel).

It 1s now sufficient to establish that operators inverse to those of (3.4)
exist for any a from some strip |Im al < 86,. Let the elgenvalues of the
operator G0 be 0 <8 <82 L. .. <€6,2<..., and let §,°+ > as n - = .,
Then the operator (I + a®Gy,o )" ' exists for any a except g = Fid,, Fiby, - - -
and, 1n any case, for any o from the strip |Im al < &, . This proves the
required statement about the operator 6,

We shall now show that if the quantity |Im o| is sufficlently small, then
the second equation of (3.3) for J = 0, or (equivalently), the second bound-
ary value problem of (3.2) for f = 0 has a zero solution only. Multiplying
the second equation of (3.2) for f = 0 by uy* and integrating over r from
ry to r, we obtailn

ful®+ 202 ful® +atfjul? =0 (3.5)
Ty
d 2
(halo=1t gy Dula=t Ll g, futr= | G + [ rar)
ry
Setting a =y + t6 and separating the real and imaginary parts in (3.5),
we obtain
fuh?®+ 2 G —8)ul®+ [(y2 — 8% — 4y30%] [ule® = 0 (3.6)
¥o [Hufh® + (¥ — 8% uf?l =0 (3.7

As we know (see [T7]), the following inequalities are valid:
ule <coll flufe<<ealulh (3.8)
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where 0o, ¢, are positive constants which depend only on r, and r, . We

set
8 inls i 1 }
== m1iln y T —_—r=
{ ! o ’ 1 VZ
and let |Im al = |8] < 85. Then the fact that u = O follows: (1) for &=
for

0
from (3.0),(2 6 #0, y#0 from (3.7). In fact, from (3.7) and (3.8)
we deduce that

0=Julh+ (¢ — 0% o > (1 — 8% ule® + v*) ul? > v*{u] ¢

3) for 8§ #0,, y =0 from (3.6). From (3.6),(3.8) for y = O we find,
in fact, that

O=lulh®— 20 ul®+ 8 fluls® > (1—28%2) fulp® + & ule? > 6 u]?

The foregoing, in accordance with Fredholm's theorem, implies that for
|Im o| < 8o the operator [ — 2a3G,L + a*G,, 1s invertible. The second ex-
pression of (3.4) implies that the operator @, in the strip |Im o} < &
depends analytically on a . The Lemma has been proved.

4, The speotrum of bifuroation. In the present section we shall estab-
11sh conditions under which the operator A, defined in (1.11) has a real
and singular spectrum. PFrom this, by virtue of Krasnosel'skii's theorem,
we deduce that each eigenvalue of the operator 4, 1is a bifurcation point
of the operator K,: for values of the parameter X which are close to it,
Equation (1.10) and thereby boundary value problem (1.6),(1.7), have zero
solutilons.

Theorem 4.1 . Let the conditions

o (N=uv,(nN/r>0 (n<r<r) (4.1)
g = —(dvy/dr+ v,/ 1) >0 (rn<r<r) (4-2)
be fulfilled
Then for any ao wlth the exception of some denumerable set the operator
Ao has a sequence of positive and simple eigenvalues O < ;< Ag< ... each
of which is a bifurcation point of Equation {1.10). All of the intervals
(A, Xa), {Aa, A\¢) ... belong to the spectrum of Equation {1.10).

If condition (4.1) is fulfilled, and if the inequality
g(rz—(dvo/dr+vo/r)<0 (4.3)
which 1s the opposite of (4.2) is satisfied instead of the latter, then the
operator A4, does not have any real elgenvalues, and there is no bifurcation.

Proof . Let conditions (4.1) and (4.2) be fulfilled. Since the pro-
duct of the oscillatory operators 1s yet another oscillatory operator [3 to
5], the opefator p defined in (2.11) is oscillatory. According to the
results of L4 and 5] this implies that its spectrum consists of a sequence

of singular positive elgenvalues 0 <p, (@) <pg(@)<...<p,(@) <-.. The
spectrum of the operator A, therefore consists of the real eigenvalues
ko s (ko) \'x
Mg = (l"—;,f—,L) ’ Ay = — (&——T) (i, k=1,2,..9
fotg i 2Kty

According to Lemma 1.1, all of them have a rank of 1 . For this reascn
the multiplicity of each of them is equal to the dimensionallty of the free
vector space., Thus, the multiplicity of an eigenvalue, let us say ks
is equal to the number of elements in the matrix (A,,) situated in the ‘same
row and equal to xhk. because of the singularity of elgenvalues u,, the
columns of the matrix (x,,) do not contain identical elements).
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What follows 1s based on the following Lemma, which is a simple corollary
of the theory of perturbations of the spectrum of a linear operator.

Lemma 4.1 . Let the linear operator B(a) be completely continuous
and analytic with respect to q along the real axis. Let 1ts spectrum con-
sist of a sequence of positive and single elgenvalues O< ul(a)f pala)< ...
eee < Wala) < ... Then all p,(a) (¥ =1, 2, ...) are analytic functions
on the real axis.

Proof . According to perturbation theory (e.g. see [6 to 8]), the
singularity of the elgenvalue u,(a) implies the possibllity of 1ts analytic
extension along o . In this case My, @) <p,@) <pra(@) (k=2,3,...),

1s valid for any o , since 1t cannot pe violated without the appearance of
a multiple eigenvalue for some value of g . The Lemma has been proved.

It is sufficient to consider the eigenvalues \,,.

Let us set A;(0) = ]fp,-(a)/ a2, (The function A, (a) 1s analytic with
respect to o on the positive semlaxis o > O . We have Ay = A; (kay).
The set I onf those qq for which there are at least two idenitical numbers
among the \,, 1s clearly the Jjoin over all natural ¢, k, r, 8 of the sets
Tiy:, of those ao for which the equation

A; (kag) — Ar (sag) = 0 (4.4)
is fulfillled.

We shall show that the analytic function Ayys (@) = A; (ka) — A, (so)
cannot be an 1dentical zero.

In fact, setting for example ¢ > r and taking account of the inequality
Ala) > As (a) , from the assumption that AV‘"EO we arrive at the conclusion
that

A, (s@) = A, (ka) > A, (k)

which is 1Impossible for 8 = k ., If, on the qther hand, &8 # k , then for
any 0 < a <« and any natural p we have

Ar(a)?Ar((-%)p a)—>+oo for p—> o

since A,{a) ~= @8 @ - 0 or = {see Note 2 below). The same reasoning
applies to the case { = r .

Now we can say that T,,,, as the set of zeros of the analytic function
Aixrs 1S not more than  denumerable. Hence the set T 1s not more than
denumerable.

Tyyrs is, in fact, denumerable; 1its limiting points are O and « (see
Note 3 below).

Let a, &I'. We number the elgenyalues i,, 1in increasing order to obtain
the sequence of single eigenvalues of the operator 4o : 0O < A< Ag< ...
Each of them, in accordance with Krasnosel'skii's theorem [1], 1s a bifurca-
tion point of Equation (1.10).

From the results of [9] 1t follows that the rotation of the vector field
(I — AKko)v on spheres of large radius in the space #,° is equal to + 1 .
For this reason, Just as in [2] we find that equation 11.10) has nontrivial
solutions for any X from the intervals (X, %), (Az, A¢).... These
intervals belong to the spectrum of the operator XK.

If conditions (4.1) and (4.3) are fulfilled, then the operator — B is
oscillatory. Hence, the operator A4, has no real eigenvalues under these
conditions (they are all imaginary), and there i1s no bifurcation. The theorem
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has been proved.

.N ot e 1 . The theorem and its proof remain valid if equality in indi-
vidual points of the segment (r;, r,) is admitted in (4.1) and (#.2). We can
also consider very irregular w and ¢ , e.g. replacing grdr by 4o 1n
the second integral operator of (2.10); here ¢ 1s an arbitrary increasing
functlon.

Note 2 . Let us call the quantity

Ay, = min A, (a) for 0 <a oo
-he bifurcational critical Reynolds number.

We shall prove that pAp> O and 1is attalned for some value of ¢

Since the function A1(a) 1s contlnuous for a & (0, oc), it 1s sufficient
to establish that A, (a) ~ += for o -~ 0, » . Since A, (@) = a* Vi, @),
and pl(a) is an analytic function on the entire real axls, and u,(0) > 0,

i1t follows that
A (@) ~ a3 Vp,l (O) -+ o0 for a—0
Further, multiplying the first two equations of (2.2) for A = p,(a) by

ry , —rv , respectively, and integrating over [r,, ;] , we obtain the rels-
tions (for notation see {3.5)) . .
2 i3
Hw¥+thw+awmm=ﬂﬁmgmwmnnmﬂ+wumﬁ=A&gwmr (4.5)
" 7'"1
We set
C =max {max |o(r)|, max |[g(r)|}
rrry ra<rr,
Applying the Buniakowski inequality, we find from (4.5) that
o Jlule? <2A:,C [ulfe ]2 fon v <MClulpllvlo (4.6)
BX virtue of the fact that (u, V) is a nonzero solution, we obtain from
(4.6) the estimate —
> V2 -4 oo for a4 — o0

This proves our statement.
1t remains uncertain whether it 1s true that flow (1.2) is stable for
A < Ao ("principle of alteration of stability"

Note 3 . The exclusive denumerable set I mentloned in the proof
of the theorem actually does exist.

In fact, since the function X = j, (a) ~ = 0, = , we can point
out two continuous branches of the inverse function ), aa(x) such that
a;(A) ~0; aa(r) ~= as X = +® . Then qgz{r)/ al?x -~ + > A=,
so that for each natural % starting with some particular & there exlsts

an n, such that aa(n,) = %, (n,) . Let us set a,(n,) = ao,. Then
M (k%o ) = A, (0oy) - the set’” T contains all of the points ao, (% = 1,

...) and 1s therefore denumerable.

2,
Approximate computations indicate (it would be interesting to have a
rigorous proof of this) that a,(a) 1is a"downward convex function. If this
is indeed the case, it follows that A, is attalned for a unique value of
ao » and that ll(ao) is a bifurcation point in a certain one of its neilgh-
borhoods.
Note 4 . The theory of osclllatory operators [3 and 5] implles
several things about the properties of the eigensolutions of problems (2.2).

For example, for solutions (u, v), (u,, v,) of these problems which
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correspond to the minimum eigenvalue, all of the functions u, v, u,, 2,
retain the same sign on the segment (r,, r,), while for the kth {in magni-
tude) eigenvalue, each of these functions changes sign k% — 1 times. The
eigenvalues of each of the equations (2.6),(2.9) from a complete system in
Ho .

Note 5 . As an example, let us consider Couette flow {1.4). Here
a
we have m(r)za—{—b/rz,g(r):—-za (47)

Prom Theorem 4.1 we find that if the cylinders are rotating in the same
direction, w,> 0, w,20 {the outer cylinder can be at rest), then second-
ary steady flows arise with a certain Reynolds number, provided the condition

W1y — oy <0 (4.8)
On the other hand, 1f the opposite inequality

applies, then there is no bifurcation. As we know (see [10 and 11]) in this
case the Couette flow 1s stable relative to axisymmetrical perturbations for
any Reynolds number,

Let us cite a simple proof of this fact (*).

We shall consider the nonsteadystate equations corresponding to system
(18). These are obtained by adding the terms —A (du,/ 1), —A (Bu,/ 1),
—A (fu,/ 8t) to the left-hand sides of the second, third, and fourth equa-
tions Of (1.8), respectively. Multiplying these equations by %., —2@/ g (uy),
u, summing the resulting equations, and integrating over the domain

D(ry&r<ry |5l <n/ay), We obtain

P

%%S}(u,2+ku92+u})rdrdz::—vg)[(\ Zﬁr)zﬁ-(%)s—{-ﬁi +

re
+ (%’)2 + (%u;z“)z] rdrdzwvsj[h(i;—f,— - ~z;_9_)2+
+ (%}:- + 3:1) g % +h (%)2] rdrdz (h:-%}) (4.10)

In order for the right-hand side in (4.10) to be negative, and for flow
{1.%) to be stable for any Reynolds number, it is sufficlent that the func-
tional

rs

l(v):S [h (v' —“})2 -+ (%?— 2’._h) vv'] rdr (4:11)

be nonnegative on the set of smooth functions v{r) which vanish for r=r,7,,
Specifically, this requlres that the function »n be nonnegative. But for
Couette flow with allowance for (4.7) and {4.9) we find with a > 0 that
r
20 b S pae .
h=_—§~=1-{-a-2~,>/0, i(v}: h(v——T) rdr>0 (v %0)

Ty

*) A slight alteration of this proof would enable us to show that stability
also takes place when @zr? —o,r2=0 .
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We have just proved the stabllity of flow {1.3) in a linear approximation.
liowever, according to the results of [12], nonlinear stability also follows.

5. Instability. In this section we shall establish that under conditions
(4.1) and (4.2) which ensure the appearance of secondary flows, principal
flow (1.2) 1s unstable for sufficiently large Reynolds numbers.

In [13] this fact was established in the case of Couette flow through the
asymptotic integration of system (5.1),(5.2) for » - = ,

As we know, the matter is reduced to an investigation of the spectrum of
the boundary value prcblem

(L —a?)?u —o (L —au=_2a00, (L—-0a)v—ov=— hgu (3.1)

u=u =0 (r=r, 1y, v=0(r=ry,ry (5.2)

If all of the eigenvalues ¢, (¥ =1, 2, ...} for a given A have nega-
tive real parts, then flow (1.2) is stable. The existence of at least one

eigenvalue with a positive real part results in instability. The applicabi-
11ty of the method to the nonlinear instablility problem is Justified in [12].

Theorem 5.1 . Let conditions (%.1) and (4.2) be fulfilled. Then
for any @ > — (a®+ @) (0o >0 depends only on r, and r,)} there exists a
sequence A< Ag< ...; A,==o of X\ values such that problem (5:1),(5.2)
has a nontrivial solution.

Proof . The differential operators in the left-hand sides of Equa-
tions (5.1) admlt of the representation

ne 1 d d d d .
(L—a*fPu—c(L—a)u= —Ipo 57 01 77 PP F7 P10 gy Pao
d d ..
(L—a¥)v—ov=py, = Pro 77 Pae? (5.3}

where po, Py, Pe are functlons defined in (3.1), and Pogr Pror Pge ATE Elven

by Equatlons ,

TPgs == Pog = Yi(r}, Pra= Pagt {5.4)

where ¥,{(r) is some solution of Equation
(L—a®—ag)Y; =20 (£.9)

If of+ 0> —0p , Where o, 1s the first elgenvalue of tie differential
operator - L for the second condition of (5.2), tnen Equation (5.5) has a
solution ¥, which is positive on the segment [r;, ";] (if o®+ o = 8°> 0,
as our ¥, we simply take I,(8.) ).

By virtue of the results of Krein {3 and %], (5.3) implies that the cor-

responding Green's operatorsGlm G2, are oscillatory. it remains for us
to note that boundary value problem (5.1),(5.2) 1s e¢quivalent to the inte-
cral equation (5.6)

u=upB u, B,= G, uG ¢

with the oscillatory operator B, and once agaln refer the reader to the
results of [5]. The thcorem has been proved.
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